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Notes on Coupled Motion in a Linear Periodic 
Lattice and Applications to Booster Injection 

C. J. Gardner 

1 Introduction 

For the past four years, coupling, introduced by skew quadrupoles, has 
been used during the injection of heavy ions in the Booster to enhance, the 
efficiency of the injection process. The use of coupling was first proposed 
by Roser [l] who showed by modeling the process that the enhancement 
was actually quite significant. A coupled injection scheme was then 
developed for the Booster using existing skew quadrupoles and this has 
been used ever since for the injection of heavy ions. Although the scheme 
prescribes specific values for the tunes and skew quadrupole currents, the 
actual values are determined empirically using the prescribed values as a 
general guide. The purpose of the following report is to establish some 
additional guidelines to aid in the tuning of the coupled injection 
parameters. Sections 2-11 are essentially a set of notes on coupled motion 
in a linear periodic lattice which are then applied in sections 12-17 to the 
injection of heavy ions in the Booster. 

2 The Beam Ellipsoid 

Let 20, zh, yo, yb be the horizontal and vertical positions and angles of a 
beam particle with respect to the reference trajectory at a point so along 
the trajectory. Then the positions, 2 and y, and angles, d and yl, of the 
particle at the point s along the trajectory are given by 



where 

and T is the four-by-four transfer matrix between so and s. The matrix T 
is symplectic and has unit determinant. 

Now suppose we define an ellipsoid at so by 

(3) ZoE, t -1 Z O = E  

where EO1 is a four-by-four real, symmetric, positive definite matrix with 
unit determinant. (We use a t to  denote the transpose of a vector or 
matrix.) Then it is easy to show that the ellipsoid at so is transformed into 
another ellipsoid at s. Using ZO = T-'Z in (3) we find 

ZtE-'Z = E ,  (4) 

where 
E = T E ~ T ~ .  (5) 

Equation (4) defines an ellipsoid provided the matrix E-' is symmetric 
and positive definite. Since Eo is symmetric (EL = Eo) we have 

E+ = T E ~ T +  = T E ~ T ~  = E ( 6 )  

and E-' is therefore symmetric. Now a real and symmetric matrix, A, is 
positive definite if the quadratic form ZtAZ > 0 for every Z # 0. To show 
that E-' is positive definite, consider 

Z ~ E - ~ Z  = Z L T ~ E - ~ T Z ~  = Z ~ E O ~ Z ~ .  (7) 

Since Z!EO1Zo > 0 for all Zo # 0, and since Z = 0 if and only if Zo = 0, it 
follows that ZtE-lZ > 0 for all Z # 0. Therefore E-' is positive definite, 
and the ellipsoid defined by Eo is transformed into another ellipsoid 
defined by E in going from so to s. We note that since IT\ = 1, 

and the volume enclosed by the ellipsoid is therefore conserved. 
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Now since ZtE-lZ < E if and only if ZiEo'Zo < E, we see that any 
particle inside (outside) the ellipsoid (3) at so will be inside (outside) the 
ellipsoid (4) at s. Thus if we defme the beam ellipsoid to  be the smallest 
ellipsoid which contains the beam particles at SO, then the evolution of this 
ellipsoid provides a convenient way of keeping track of the motion of the 
beam without having to  track each particle individually. The ellipsoid is 
also useful for characterizing the motion of a single particle since any 
particle on the surface of the ellipsoid at so will also be on the surface of 
the ellipsoid at s. In particular, if T is the transfer matrix for one period 
of a periodic lattice and E is an ellipsoid matrix which satisfies E = TETt, 
then a given particle will always be on the surface of the ellipsoid 
ZtE-lZ = E upon traversal of each period of the lattice. 

3 Maximum Extent in each Dimension 

Let us now determine the maximum extent, in each dimension, of the 
ellipsoid defmed by (4). Since the matrix, E, is real and symmetric there 
exists an orthogonal transformation, OOt = I, which diagonalizes E. Thus 

and 
E = Ot,O, E-l = Ofe-lO. (10) 

Since E is positive definite, its eigenvalues, the matrix elements e;, are all 
positive, and it follows that 

E;; = E 0 j ; e j k O k ;  = x ( O k ; ) 2 e k  > 0, (11) 
j , k  k 

i.e. the diagonal elements of E are all positive. Now let 

Y=OZ, Z=OfY. (12) 

Then we have 
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and the equation of the ellipsoid in the transformed coordinates, E, is 

It follows that the maximum extent of each coordinate is given by 

x2 I Ee;. 

To obtain the maximum extent of the coordinate Z;, we write 

= OjiYj = C ( f i O j i ) ( y j / f i ) -  
j j 

Then making use of the Schwarz inequality [2] we have 

2; I c ( o j i f i ) 2  c(yj/&)2, 
j j 

and using (11) and (14) in (17) we have 

2: I €E;;. 

Thus the diagonal elements of E give the maximum extent in each 
dimension of the ellipsoid defined by ZtE-lZ = E .  

The equality in (17) and (18) holds if and only if &/fi = X O j i f i ,  
which is true if and only if 

Using this equation in (14) we find 

yj = X0j;ej. 

E = X2 x ( O j ; ) 2 e j  = X2E;;, 
j 

X2 = €/E;; .  
and therefore 

Then using (12), (19) and (10) we find 

j j 

zk = C O j k Y j  = XCOjke jOj i  = XEk; 

and therefore 

Thus when Z! = EE;; the other components of Z are given by the second 
of equations (23). 
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4 Projections 

We can learn more about the size and shape of the ellipsoid by examining 
its projections onto the (2, z'), (y, y') and (2, y) planes. To obtain the 
projections we partition the matricies in equations (1) and ( 5 )  into 
two-by-two matricies. Introducing the notation 

z = ( $ ) ,  x = ( ; ) ,  . = ( i t )  
where Fo, GO, CO, F, G, C, M, N,  m, n are two-by-two matricies, the 
equation E = TEoTt becomes 

F = MFoMt + nGont + nCiMt + MCont, 

G = NGoNt f mFomt + NCimt + mCoNt, 

C = MCoNt f nCimt + MFomt + nGoNt, 

(27) 

(28) 

(29) 

and Z = TZo becomes 

X = MXo + nYo, Y = mXo + NYo. (30) 

Now consider the ellipsoid ZiEi'Zo = E. To find the projection onto the 
20, z; plane we seek a transformation, T, from coordinates given by Xo, 
YO to  new coordinates given by X, Y such that X = XO and the equation 
for the transformed ellipsoid is of the form 

XtF-'X + YtGV1Y = E ,  (31) 

where F-l and G-' are positive definite. We obtain such a transformation 
if we choose 

M = N = I, n = 0,  m = -c~F;'. (32) 
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Then we have 

0 

T = (  m I  I O ) ,  T - ' = (  -m I ' ) I (33)' 

and the equation E = TEoTt becomes 

F = Fo, C = 0, G = Go - CiFi'Co. n (34) 

Thus 

and the equation for the transformed ellipsoid is 

where 
X = Xo, Y = Y o  - CLFi'Xo, F = Fo. (37) 

Now since E;1 is positive definite and since T-l exists, the matrix E-' is 
positive definite. The quadratic forms XtF-IX and YtG-IY are 
therefore positive definite and it follows that 

XLFG'Xo 5 E. (38) 

Defining 
fo = Fo/D, D = IFo~'/~ (39) 

x;f,-'xo 5 ED, If01 = 1 (40) 
we obtain 

which defines an elliptical region of area TED.  This region is the projection 
of the ellipsoid ZLEi'Zo = E onto the 20, zh plane. The boundry of this 
region is given by 

XLFi'Xo = E. (41) 
For these points we have 

YfG-IY = 0, Y = 0, (42) 

and therefore 
Yo = CbFi'Xo. (43) 
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Thus equations (41) and (43) give the points on the surface of the ellipsoid 
which project onto the boundry of the ao, z; projection. 

Generalizing the argument given above we find that the projection of the 
ellipsoid, ZfE-lZ = E ,  on the Z,, 2, plane is the elliptical region 

Xff-lX 5 ED, (44) 

where 

x = ( 2 ) , D = (ZmmBhn - Ein)1/2, (45) 

and the matrix elements o f f  are 

5 The One-Turn Transfer Matrix 

For the remainder of these notes we will use T to  denote the transfer 
matrix for one turn around a ring or for a pass through one period of a 
periodic lattice. In this section we examine the symplectic nature of T. By 
definition, a four-by-four matrix T is symplectic if 

T ~ S T  = s, 
where 

0 1  0 0  1 0 0 0  
0 1 0 0  

s = [  -; 0 0 - 1 0  ; ; :), -S2&[ 0 0 0 1  0 0 1 0  

(47) 

Taking the inverse of both sides of (47) we obtain T-'S(Tf)-' = S and 
therefore 

s = T S T ~  (49) 
which is an equivalent form of the symplectic condition. Now, following 
Courant and Snyder [3], we define the symplectic conjugate of a 
two-by-two or four-by-four matrix A to  be 
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1 1 
f 

where S is given by (48) for the case of four-by-four matricies. For 
two-by-two matricies we have 

and it follows that (for two-by-two matricies) 

AX = SZA = (AllA22 - A12A21)I = IAII, 

A + SZ = (All  + A22)I = Tr(A)I. 

(52) 

(53) 

(54) 

Using (47) and (49) we have 
- 
TT = -ST~ST = -s2 = I, TT= -TST~S = -s2 = I 

and therefore r = T-’ if T is symplectic. Then writing 

a 
T = ( ”  m N ’  ” )  

where M, N, m, n are two-by-two matricies, we have 

(55) 

M E  MMtnXi Mm+nN 
T T = ( M  m N  n ) ( -  E N  ) = (  m a + N i i  mEi+NN 

and 

T T = ( ”  ” ) ( ”  n ) = ( -  MM+Eim Mn+= 
T i m  m N  EM+Nm En+NN 

and comparing (57) with TT = I we fmd 
- 

(MI + lml= 1, IN( + In( = 1, Mn+mN = 0. (58) 

Thus the symplectic condition imposes a total of 6 constraints on the 16 
matrix elements of T, and T is therefore specified by 10 independent 
parameters. Comparing (56) with TF = I we also obtain 

which are equivalent to  (58). 
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6 Reduction to Block-Diagonal Form 

It has been shown by Teng [4, 51 and more recently by Roser [6] that T 
can be expressed in the form 

A 0  
T = RUR-~,  B )  

where A and B are two-by-two matricies and U and R are symplectic. We 
review here the treatment of Roser which overcomes some deficiencies of 
Teng's treatment. 

Since U is symplectic we must have (AI = IBI = 1 and it follows that U is 
specified by six independent parameters. The remaining four parameters 
needed to  completely specify T are contained in the matrix R. To express 
R in terms of four independent parameters we first choose 

Then it follows &om the symplectic condition that R is of the form 

d I w  1 0  
-W dI 

where 
d2 = 1 - IW(, d21= I -  WW. (63) 

Now writing 

T = R u E = (  d I w  ) (  A 0  0 B ) ( W  dI -w ) (64) -w dI 

we f h d  
M = d2A+WBW, n = m B  - dAW (65) 
m = dBW - dWA, N = d2B + WAw. (66) 

We see here that if d = 0 then m = n = 0 and T is in block-diagonal form. 
Since we are considering transfer matricies for which m and n are nonzero, 
we shall assume that d # 0. Now subtracting N from M we have 

M '- N = d2(A - B) + WBW - WAW (67) 
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and taking the trace of this equation we obtain 

T = d2U - lWlU = (2d2 - 1)U (68) 

T =  Tr(M - N), U = Tr(A- B). (69) 
where 

Thus we can write 

U + T = 2Ud2, U - T = 2U(1- d2), U 2  - T2 = 4d2U2(1 - L E 2 ) .  (70) 

Now adding m and E we have 

m + E  = dBW-dWA+dBW-dWA 

= ( B + B ) ~ w - ~ w ( A + A )  (71) 

m + i i =  -dUW. (72) 

and using (53) we obtain 

Multiplying this equation by n and using In/ = 1m1, which follows from 
(58) and (59), we have 

-dUWn=mn+iin=mn+mm 

and 
- dUnW = nm+ nE = nm+ iiim. 

We can also multiply the second of equations (65) by W to obtain 

nW = d(WBW - AWW) Wn = d(WWB - WAW), 

and using these equations in (73) and (74), we obtain 

d2U(WAW- WWB) = mn+mm 

d2U(AWW-WBW) =nm+iiim. 

Then taking the trace of (77) we obtain 

d2U21WI = d2U2(1 - d2) = Tc(mn) + 21ml 

and using this in the last of equations (70) we obtain 

U2 = T2 + 4Tr(mn) + 81ml. 
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Thus we have obtained an expression for U which contains only the matrix 
elements of T. Now using (63), (65) and (66) we have 

M - A = (d2 - 1)AfWBW = WBW - AWW, 

N -  B = (d2 - l)B + WAW= WAW- WWB, 

A = M + (AWW - WBW) 
B = N -  (WAW- WWB). 

(80) 

(81) 

(82) 

(83) 

and therefore 

Using (70), (76) and (77) we then have 

(84) 
2 

U + T  A = M + -  (nm+ m) 

(85) 
2 

U + T  
B = N - -  (mn+ mE). 

Thus if we are given the transfer matrix T we can obtain the matricies R 
and U by making the following sequence of evaluations: First we evaluate 
the right side of equation (79) to  obtain U2 which gives us the magnitude 
of U but not its sign. To determine the sign, we substitute U = &@ into 
the first of equations (70) and choose the sign which gives d2 > 0. Having 
determined U we can obtain A and B from (84) and (85). To obtain W 
we choose d = +@ and substitute this along with U into (72). 

Now we define Courant-Snyder parameters such that 

where 

( 1 0  ) ,  J1 = ( ) ,  J2 = ( p 2  ) , (91) 0 1  -71 -Q1 -72 -Q2 
I =  
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and since [AI = IBI = 1 we have 

Now since 
2 Jl = -I, Ji = -I 

it follows that 
(93) 

A" = I cos n$1 + J1 sin n$l, B" = I cos n3h2 + J2 sin n$2, (94) 

and using this in 

we obtain an expression for Tn which depends explicitly on n and does not 
require n matrix multiplications to  evaluate. 

7 The Matched Ellipsoid 

Now consider the matricies 

where ~ 1 ,  PI ,  71, a2, P 2 ,  72 are the Courant-Snyder parameters defined 
above. It follows from (90-92) that 

AfAt = f, BgBt = g, UDUt = D (97) 

and if we let 
E = R D R ~ ,  

we have 

T E T ~  = R U R - ~ ( R D R + ) R - ~ ~ U + R ~  = R U D U ~ R ~  = R D R ~  = E. (99) 

Thus, any ellipsoid defined by the matrix E = RDRt is transformed into 
the same ellipsoid on each turn around a machine and is said to  be 
matched to the machine lattice. For the remainder of these notes we will 
use E to denote the matched ellipsoid matrix. 
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1 , 

8 Courant- S nyder Invariants 

After passage through n periods of a periodic lattice, a beam particle 
whose initial coordinates were 20, zb, yo, yb has coordinates z, z', y, y' 
given by 

Z = TnZo, (100) 

where 

zo = ( xo ) , xo = ( ;; ) , y o  = ( 2 ) 9 

z = ( : ) ,  x=(;), .=(y.) 
(101) YO 

and 
T~ = R U ~ R - ~ .  

Then writing 
A 

where 2, 9, go, 9 0  are two-dimensional vectors, equation (105) becomes 

g = Ango, P = BnT0 (107) 

and it follows from (97) that 

gtf-lii. = g$-ljio = E, 

and ptg-lp = pt o g  -19 0 - - €2. 

These are the Courant-Snyder Invariants of the motion. Now since 

f-1 0 
D-'= ( g - ~ )  
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9 Range of Motion 

Constraints on the range of positions and angles given by equations 
(100-103) follow from the Courant-Snyder invariants and from the 
projections of the matched ellipsoid onto the a ,  a' and y, y' planes. The 
matched ellipsoid is obtained by substituting equations (62) and (96) into 
(98). Thus 

and therefore 

(115) 
- -t F = d2f + WgW , G = d 2 g +  WfWt. 

Then writing 

z =  ( c ) ,  x =  ( Zf), Y =  ( if) 
and using the results of section 4, we obtain the projections of the matched 
ellipsoid onto the a ,  a' and y, yf planes, 

XtF-lX 5 E, YjG-lY 2 E. (117) 

The positions and angles in the two planes are constrained to remain 
inside these ellipses. Further constraints are imposed by the 
Courant-Snyder invariants. Writing the first of equations (104) as 

Z = R g  (118) 

X=dg+WWY, Y = - W % + &  (119) 

and using (62), (102) and (106) we have 
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and therefore 
x=x1+x2, Y=Y1+Y2 (120) 

Xi = d?, X2 = WY, Y1= -WX, Y2 = dT. (121) 
- A  0. 

where 

- 4  Now if d # 0 and 1 W J  # 0, the matricies d2f, WgW , WfWt, d2g all have 
inverses and are all positive definite, and we have 

X!(d2f)-lX1 = ztf-'? = €1, (122) 
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10 Normal Modes of Oscillation 

Equations (120-125) show that the positions and angles z, z', y, y' are 
given by the superposition of two modes of oscillation which we shall label 
1 an 2. In mode 1 we have €1 # 0 and ~2 = 0, and it follows from (122-125) 
that X2 = Y2 = 0 and therefore X = X1 and Y = Y1. Similarly, in mode 
2 we have €2 # 0 and ~1 = 0, and it follows that X = Xi  and Y = Y2. 

Thus, for each mode of oscillation, the motion in each plane is constrained 
to lie on a single ellipse. If €1 and €2 are both nonzero, then both modes of 
oscillation are present and the motion in each plane is characterized by the 
superposition of two ellipses. This characterization of the motion in terms 
of two ellipses was first derived by Ripken [7, 81. 

Now using (107) in (121), and (91) in (94), we have 

Xi = d% = dAn%o, X2 = WY = WB"Y0 (135) 

Y1= -W% = -WAn%O, Y2 = dT = dBnPo (136) 
where 

) (137) 

) - (138) 

cos n$l + a1 sin n$1 P1 s i n 4 1  
A" = ( -71 sinntjl cos n$1 - a1 sin n$l 

and 

cos n& + a 2  sinn& P 2  sin 4 2  
cos n$2 - a 2  sin n$z -72 sin n$2 

B n =  ( 
Thus the tunes, Q1 and Q 2 ,  associated with modes 1 and 2 are given by 

$1 = 2 ~ Q 1 ,  $2 = 2 ~ Q 2 -  (139) 

Using 
dI -W .-'=( w dI ) 

in the second of equations (104) we can obtain the vectors 2 0  and 20 
appearing in (135-136) in terms of Xo and Yo. Thus 

20 = dXo - WYO, YO = WXO + d Y 0  (141) 

and it follows that for mode 1 oscillations (€2 = 0) we must have 

8, = 0 = wxot d Y 0  (142) 
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and for mode 2 oscillations (€1 = 0) 

2 0  = 0 = dXo - WYo. (143) 

These equations give the conditions the initial positions and angles must 
satisfy in order to  excite mode 1 or mode 2 oscillations. 

11 Minimization of E Subject to Constraints 

In our analysis of injection in the next sections we will need the values of 
the positions and angles 20, zh, yo, yh which, subject to  certain 
constraints, minimize E = ZLE-lZo. Let us first consider the case in which 
the nth component, Z,, of Zo is fixed at some value 2. We wish to find 
the other components of ZO for which 

E = ZLE-lZo = F(Z0) (144) 

is smallest. If the minimum exists we have 

- = 2(E-lZO); = 0, 
8F 
a Zi i # n (145) 

and therefore 

E-lZo = XU, Zo = XEU, Z = 2, = XE,,, Z; = ZE;,/E,, (146) 

where u is the unit vector with all but the nth component equal to 
zero4.e. u; = &in. The minimum value of P( ZO) is then 

E = X2utEu = X2E,, = Z2/Enn (147) 

and the corresponding components of Zo are given by the last of equations 
(146). 
Now consider the case in which the first and third components of ZO are 
fixed at values ZO and yo. Then we have 

E-IZo = X I U ~ +  X 3 ~ 3 ,  Zo = XlEul + XJEUQ (148) 

where u, is the unit vector with all but the nth component equal to zero. 
Solving (148) for XI and X3 we find 
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The values of the second and fourth components of Z O  for which E is 
smallest are then 

12 Booster Injection 

Let us now apply the results of the previous sections to the injection of 
heavy ions into the Booster. The heavy ion beam enters the Booster at the 
exit of the electrostatic inflector located in the C3 straight section. We 
assume that the beam emittance is small compared to the acceptance of 
the Booster and define the initial beam ellipsoid to be the smallest 
ellipsoid which contains the incoming beam distribution. Thus, if we let 

and 

t o =  ( y ; )  , uo= ( :g ) , vo= ( a )  (154) 

z o =  (;$ xo= (;$ y o =  ( 2 )  (155) 

where uo, ub, 210, t(, are the initial positions and angles (with respect to the 
equilibrium orbit) of any particle in the incoming beam distribution, and 
eo, ab, yo, y; are the initial positions and angles (also with respect to the 
equilibrium orbit) of the beam ellipsoid center, then the initial beam 
ellipsoid is defined by 

((0 - Z o ) ' E ~ ' ( t o  - z o )  5 Eb (156) 
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where Eb specifies the emittance. On the nth pass by the inflector exit, the 
positions and angles z, z', y, y' of the center of the be& ellipsoid are 
given by 

Z = TnZo, (157) 

and T is the transfer matrix for one turn around the Booster starting at 
the inflector exit. Similarly, the positions and angles of a beam particle on 
the nth pass by the inflector are given by 

The beam ellipsoid on the nth pass by the inflector is therefore given by 

(6 - z)+Eil(z' - z) 5 €6, (161) 

where 
E, = T ~ E ~ T + ~  

and Z is given by (157). Equations (157) and (162) give the complete 
turn-by-turn evolution of the beam ellipsoid as it goes around the Booster. 

13 Computer Code 

To study the turn-by-turn evolution of the beam ellipsoid after injection 
into the Booster, a computer program, CINJ.FOR, has been written to 
calculate the necessary matricies and parameters. The program requires 
the Courant-Snyder parameters at the inflector exit, at  each quadrupole, 
and at each skew quadrupole. These are obtained by the MAD code for 
the case of a bare Booster which contains only the lattice dipoles and 
quadrupoles and has zero currents in the auxiliary windings on the 
quadrupoles. (The auxiliary windings on all quadrupoles at  horizontal beta 
maximums are connected in series as are those on all quadrupoles at 
vertical beta maximums and the currents, I h  and I,,, in the two series 
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strings can be adjusted to  obtain whatever tunes one desires.) The user of 
the program specifies the desired values for the uncoupled-i.e. with zero 
current in the skew quadrupoles-horizontal and vertical tunes, Qz and 
Q2/, and the program then calculates the currents, Ih and I,, required to 
give these tunes for a particle with magnetic rigidity equal to  that of a 1 
GeV/c Proton. The user then specifies the currents in the skew 
quadrupoles located in straight sections 1, 2, 7 and 8 of each superperiod. 
We shall consider only the case in which all skew quads are excited with 
the same current I,. Given the the skew quad currents and the bare lattice 
parameters, and having calculated the currents required to give the desired 
uncoupled tunes, the program then calculates the one-turn transfer matrix, 
T, and the matricies, R and U, which reduce it to  block-diagonal form. 
Once these are obtained, it calculates the Courant-Snyder parameters, 
given by (86-89), and the matched ellipsoid matricies D and E given by 
(96-98). The user then specifies the initial horizontal and vertical 
positions, a0 and yo, of the center of the incoming beam ellipsoid and the 
program calculates the initial angles, xb and yh, which minimize 
E = Z;E-'Zo. These are given by equations (149-150). The program then 
calculates the Courant-Snyder invariants, €1 and €2, and the four ellipses 
(122-125) associated with the motion of the beam ellipsoid center. The 
projections (117) of the matched ellipsoid ZfE-lZ = E onto the a ,  xf and 
y, yf planes are also calculated. The initial positions and angles of the 
beam ellipsoid center are then substituted into equation (157) and the 
positions and angles on subsequent turns around the machine are 
calculated. The user must also specify the initial beam ellipsoid matrix Eo 
which the program uses in equation (162) to calculate E, on subsequent 
turns around the machine. The half-widths of the beam ellipsoid in the 
two planes on the nth pass by the inflector are then given by 

where q, specifies the beam emittance. 

14 Injection Parameters to be Optimized 

If the position of the equilibrium orbit at the exit of the inflector is held 
fixed during injection, then on subsequent passes by the inflector, the 
injected beam will eventually hit the inflector and be lost. The orbit must 
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therefore be moved away from the inflector at appropriate times during 
injection in order to keep the injected beam in the machine. Eventually 
the orbit has to be moved so far from the inilector that none of the 
incoming beam enters the acceptance region of the machine, and at this 
point the injection process comes to an end. Clearly, then, the longer one 
can wait before having to move the orbit away from the inflector, the more 
beam one can inject into the machine and keep. Optimization of the 
injection process therefore consists of finding incoming beam parameters 
20, zb, yo, 36, and Eo, and machine parameters Q,, Qy, and I, which keep 
the center of the beam ellipsoid away from the inflector for as long as 
possible and at the same time keep the shape of the ellipsoid under control 
so that none of its edges scrape on the inflector. For given initial positions, 
20 and yo, of the beam ellipsoid center, the optimum angles, 2; and y;, are 
those which minimize E = ZLE-lZo. We shall assume that the initial beam 
ellipsoid has no correlation between the horizontal and vertical planes. The 
matrix Eo is then of the form 

where 

(165) A x = (  'lC i y ) ,  Ay=( " -a, ry ) 
- a, -%I 

and 
(166) 2 P X ~ X  - a, = 1, &'yy - ai = 1, = Eb. 

The projections of the initial beam ellipsoid (156) on the horizontal and 
vertical planes are then 

(Uo - XO)~A,'(UO - Xo) 5 E,, (Vo - Y o ) ~ A , ~ ( V O  - Yo) 5 cy. (167) 

and we see that E, and ey are the horizontal and vertical emittances of the 
incoming beam. We shall assume that E, = E, and that a,, P,, -y,, ay, Py, 
T~ are matched to  the uncoupled lattice parameters at the inflector exit. 
With these assumptions we find that, for the situations discussed below, 
the horizontal and vertical widths (163) of the beam ellipsoid on 
subsequent turns around the machine vary only slightly from their initial 
values. 

21 



15 Tunes and Skew Quadrupole Currents 

a 

Having specified the incoming beam parameters we turn our attention to  
the machine parameters Qx, Qy and I, and examine their effect' on the 
injection process. Let us first write down approximate expressions for the 
normal-mode tunes Q1 and Q 2 .  We know from the perturbation treatment 
of linear coupling [9,10] that if the uncoupled tunes, Qx and Qy, are 
sufficiently close to  each other and the skew quadrupole strength is 
sufficiently small, then, to first order, the normal-mode tunes are given by 

and 

where 
AQ = Qy - Qx, 

and in our case tc is proportional to  the skew quadrupole current I,. 
Subtracting (169) from (168) we have 

(170) 

QI - Q2 = ~ ( A Q ) Z  + 462 (171) 

(172) 
and it follows that 

Q2 - Qi 5 AQ I QI - Q2. 

Thus to  obtain particular values for Q1 and Q 2  we first pick some 
uncoupled tune separation, AQ, which satisfies (172) and then adjust the 
quadrupole currents, Ih and I,, so that 

With these values for the uncoupled tunes we then adjust the skew 
quadrupole current to obtain the desired normal-mode tunes. 

Now, it has been show in Ref. [ll] that for the case in which there is no 
coupling between the horizontal and vertical planes, one of several possible 
optimum horizontal tunes is Qz = 4 + 4/5 = 4.8. In this case the 
turn-by-turn motion of the beam ellipsoid center in the horizontal plane is 
characterized by a single ellipse and the injected beam returns to its initial 
position after 5 turns around the machine. This situation is depicted in 
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1 ' I  
I 

Fig. (1) where the beam ellipsoid center has been given initial coordinates 
20 = 10 m m  and yo = 0. The ellipse shown is matched to the machine 
lattice at the inflector exit and the diamonds indicate the positions and 
angles of the beam ellipsoid center on the nth pass by the inflector. When 
we introduce coupling with the skew quadrupoles, the turn-by-turn motion 
in the horizontal plane is characterized by the superposition of two ellipses 
associated with the two normal modes of oscillation as shown in sections 9 
and 10. If the coupling is not too strong, then one of the two ellipses will 
be large and the other one small, and if we choose the normal-mode tune 
associated with the larger ellipse to be 4.8, we can, as with the uncoupled 
case, wait for 5 turns before having to move the equilibrium orbit away 
from the inflector. But now, by judicious choice of the normal-mode tune 
associated with the smaller ellipse, one can wait even longer. We illustrate 
this with some examples. 

16 Examples 

Suppose we adjust Qz, Qy, and I ,  so that the normal-mode tunes 
associated with the larger and smaller ellipses are Q 2  = 4 + 12/15 = 4.8 
and Q1 = 4 + 13/15 = 4.866666 respectively. Then it will take 15 turns 
around the machine before the beam ellipsoid center returns to its initial 
position at the inflector exit. This situation is depicted in Fig. (2a) where 
the beam ellipsoid center has been given initial coordinates 20 = 10 mm 
and yo = 0. The quadrupole currents, Ih and I*, have been adjusted here 
so that QZ = 4.823333 and Qy = 4.843333, and I, has then been adjusted 
to give the desired normal-mode tunes. (I ,  = 14.5 Amps for a 1 GeV/c 
Proton.) The ellipses labeled 1 and 2 are the norrnal-mode 1 and 2 ellipses 
given by (122) and (123), and the ellipse labeled F is the projection of the 
matched ellipsoid given by the first of equations (117). The diamonds 
indicate the horizontal positions and angles of the ellipsoid center on the 
nth pass by the idector.  Inspection of the figure shows that the beam 
ellipsoid center has a horizontal position of at most 4.75 mm before 
returning to its initial position at the idec tor  exit. This is to  be compared 
with the uncoupled situation depicted in Fig. (2b). Here the skew 
quadrupole current has been set to zero and the quadrupole currents have 
been adjusted so that Qz = 4 f 13/15. As before, the beam ellipsoid center 
has been given initial coordinates 20 = 10 mm, yo = 0 and it returns to its 
initial position after 15 turns around the machine. The ellipse shown is 
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matched to  the uncoupled lattice at the idlector exit and the diamonds, as 
before, show the positions and angles of the beam ellipsoid center on the 
nth pass by the idlector. In this case we see that the beam ellipsoid center 
has a horizontal position of at most 9.1 mm before returning to its initial 
position. Clearly, one does much better with the coupled situation 
depicted in Fig. (2a). We note that projection of the matched ellipsoid 
shown in Fig. (2a) is very nearly the same size and shape as the ellipse 
matched to  the uncoupled lattice shown in Fig. (2b). 'This is because the 
strength of the skew quadrupoles is s m d  compared to that of the lattice 
quadrupoles and we have stayed away from the Qs + Qy = 9 and 
Qz + Qy = 10 resonances. Now, although the initial position, yo, of the 
beam ellipsoid center in the vertical (y, y') plane is zero, the coupling 
introduced by the skew quadrupoles produces oscillations of nonzero 
amplitude in this plane. This is the price we pay for using coupling to 
extend the time we can wait before having to  move the eqyilibrium orbit 
away from the inflector. The positions and angles of the beam ellipsoid 
center in the vertical plane are shown in Fig. (3a) where the ellipse labeled 
G is the projection of the matched ellipsoid given by the second of 
equations (117) and the other two ellipses are the normal-mode ellipses 
given by (124) and (125). Inspection of the normal-mode ellipses shows 
that the maximumpossible value of the vertical position, y, of the beam. 
ellipsoid center is 5.9 mm. The positions in the z, y plane and the 
projection of the matched ellipsoid onto this plane are shown in Fig. (3b). 

For the situation depicted in Figs. (2a) and (3), the uncoupled tune 
separation is AQ = .02. Let us now consider different tune separations 
while keeping the normal-mode tunes, Q1 and Q2, the same. As before, 
the beam ellipsoid center is given initial coordinates a0 = 10 mm, go = 0 
and we plot the positions and angles in each plane on subsequent turns 
around the machine. Figures (4-9) show the positions, angles and ellipses 
for tune separations ,of .06, .05, .04, .03, -01, and 0 respectively. Here we 
see that as the tune separation decreases toward zero, the larger of the two 
normal-mode ellipses in the horizontal plane becomes smaller and the 
smaller of the two ellipses becomes larger. When the uncoupled tune 
separation reaches zero, the two ellipses are the same size. In the vertical 
plane the two normal-mode ellipses are the same size and both become 
larger as the uncoupled tune separation decreases toward 
expected since we know from the perturbation treatment 
that the effect of the coupling increases as the uncoupled 

zero. This is as 
of linear coupling 
tune separation 
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approaches zero. Table I summarizes the data of Figs. (2-9) and includes 
data for some additional examples. In each case, the beam ellipsoid center 
has been given initial coordinates 20 = 10 mm, yo = 0 and it returns to its 
initial position after 15 turns around the machine. 2" is the horizontal 
position of the beam ellipsoid center on its closest approach to the inflector 
before returning to its initial position, and y* is the maximum possible 
value of the vertical position y. The skew quadrupole current, Is, is the 
current (in Amps) required for 1 GeV/c protons. Comparing all of the 
examples listed, we see that the beam ellipsoid center stays furthest from 
the idector for the case in which AQ = .02, &2 = 4 + 12/15 and 
Q1 = 4 + 13/15. Note also that y* decreases as AQ increases. 

Table I: 15-Turn Injection 
QZ 

4.833333 
4.828333 
4.823333 
4.818333 
4.813333 
4.808333 
4.803333 
4.867666 
4.857666 
4.847666 
4.837666 
4.827266 
4.771866 
4.776866 
4.781866 

Q Y  
4.833333 
4.838333 
4.843333 
4.848333 
4.853333 
4.858333 
4.863333 
4.867666 
4.877666 
4.887666 
4.897666 
4.907266 
4.761866 
4.756866 
4.75 1866 

AQ 
0 
.01 
.02 
.03 
.04 
.05 
.06 
0 
.02 
.04 
.06 
.08 
-.01 
-.02 
-.03 

I S  

15.10 
15.00 
14.50 
13.50 
12.20 
10.00 
6.60 
30.50 
30.10 
29.10 
27.20 
24.45 
14.80 
14.30 
13.40 

- 
Q 2 - 4  
12/15 
12/15 
12/15 
12/15 
12/15 
12/15 
12/15 
12/15 
12/15 
12/15 
12/15 
12/15 
11/15 
11/15 
11/15 

Qi -4 
13/15 
13/15 
13/15 
13/15 
13/15 
13/15 
13/15 
14/15 
14/15 
14/15 
14/15 
14/15 
12/15 
12/15 
12/15 

X* 

5.05 
4.80 
4.75 
5.90 
6.98 
8.13 
9.25 
6.13 
5.68 
5.23 
5.86 
6.98 
5.67 
5.21 
5.88 

y* 
6.16 
6.08 
5.85 
5.47 
4.90 
4.03 
2.65 
6.13 
6.04 
5.81 
5.42 
4.84 

- 

6.14 
5.94 
5.57 - 

Let us now consider normal-mode tunes for which 20 turns around the 
machine are required before the beam ellipsoid center returns to its initial 
position at the inflector exit. As before, the beam ellipsoid center is given 
initial coordinates 20 = 10 mm and yo = 0, and QI, Qy, and Is are 
adjusted to give the desired normal-mode tunes. The data are summarized 
in Table II. 
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Table IL: 20-Turn Iniection 
x* 
6.11 
5.93 
5.97 
6.34 
5.63 
6.02 
7.01 
5.75 
5.58 
5.72 
6.07 
6.37 

Qx 
4.8711 
4.8661 
4.8611 
4.8561 
4.825 
4.82 
4.815 
4.726 
4.731 
4.736 
4.741 
4.746 

y* 
6.10 
6.05 
5.97 
5.87 
6.16 
6.03 
5.63 
6.23 
6.23 
6.20 
6.14 
6.05 

QY 
4.8811 
4.8861 
4.8911 
4.8961 
4.825 
4.83 
4.835 
4.726 
4.721 
4.716 
4.711 
4.706 

AQ 
.01 
.02 
.03 
.04 
0 
.01 
.02 
0 

-.01 
-.02 
-.03 
-.04 

Is 
34.20 
34.05 
33.70 
33.10 
11.30 
11.10 
10.40 
33.50 
33.40 
33.20 
32.90 
32.30 

Q2 -4 
16/20 
16/20 
16/20 
16/20 
16/20 
16/20 
16/20 
13/20 
13/20 
13/20 
13/20 
13/20 

&I-4 
19/20 
19/20 
19/20 
19/20 
17/20 
17/20 
17/20 
16/20 
16/20 
16/20 
16/20 
16/20 

Continuing along these lines we consider normal-mode tunes for which 25 
and 30 turns around the machine are required before the beam ellipsoid 
center returns to its initial position. These data are summarized in Tables 
111 and IV. 

Table III: 25-Turn Injection 
Qx 
4.820 
4.817 
4.815 
4.810 
4.78 
4.785 
4.76 
4.765 
4.741 
4.746 
4.751 

QY 
4.820 
4.823 
4.825 
4.830 
4.78 
4.775 
4.76 
4.755 
4.741 
4.736 
4.731 

AQ 
0 
.006 
.01 
.02 
0 

-.01 
0 

-.01 
0 

-.01 
-.02 

Is 
9.05 
9.00 
8.80 
7.80 
9.00 
8.80 
18.10 
17.90 
26.80 
26.70 
26.40 

- 

Q2-4 
20125 
20125 
20125 
20125 
19/25 
19/25 

18 125 
18/25 

17/25 
17/25 
17/25 

&I. -4 
21/25 
21/25 
21/25 
21/25 
20125 
20125 
20125 
20125 
20125 
20125 
20125 

X* 

6.57 
7.07 
7.41 
8.30 
6.58 
7.51 
6.74 
7.11 
6.66 
6.94 
7.23 

~ 

y* 
6.17 
6.09 
5.96 
5.31 
6.19 
6.01 
6.21 
6.17 
6.22 
6.21 
6.16 

- 

- 

- 

- 
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Table IV: 30-Turn Iniection 
Q Z  

4.816666 
4.814166 
4.811666 
4.806666 
4.783333 
4.788333 
4.793333 
4.718166 
4.723166 
4.728166 

Q Y  
4.816666 
4.819166 
4.821666 
4.826666 
4.783333 
4.778333 
4.773333 
4.718166 
4.713166 
4.708166 

AQ 
0 

.005 
.01 
.02 
0 

- . O l  
-.02 

" 

I ,  Q2-4  
7.55 24/30 
7.48 24/30 
7.23 24/30 
6.10 24/30 
7.50 23/30 
7.20 23/30 
6.00 23/30 
37.1 19/30 
37.0 19/30 
36.8 19/30 

0 
-.01 
-.02 

& I - 4  X* 

25/30 7.51 
25/30 7.88 
25/30 8.25 
25/30 9.00 
24/30 7.52 
24/30 8.30 
24/30 9.01 
24/30 7.51 
24/30 7.70 
24/30 7.86 

Q5 

4.823333 

4.82 
4.816666 

4.731 

Y* 
6.17 
6.09 
5.87 
4.93 
6.19 
5.92 
4.97 
6.24 
6.24 
6.22 

Q Y  AQ 1 s  Q2-4  Q I - 4  n 
4.843333 .02 14.50 12/15 13/15 15 

4.82 0 9.05 20125 21/25 25 
4.816666 0 7.55 24/30 25/30 30 

4.721 -.01 33.40 13/20 16/20 20 

Table V lists the entries &om Tables I-IV for which the beam ellipsoid 
center stays furthest from the inflector before returning to  i ts  initial 
position. Here we see that as n (the number of turns required before the 
beam ellipsoid center returns to its initial position) increases, the 
horizontal position, a*, of the beam ellipsoid center on its closest approach 
to the inflector increases. Figs. (10) and (11) show plots of the horizontal 
positions, angles, and ellipses for each entry of Table V. 

_ -  y 6.57 6.17 

17 Guidelines 

We summarize the results of the previous sections with the following 
guidelines for selecting coupled injection parameters. 

1. The initial vertical position, yo, of the beam ellipsoid center (with 
respect to the equilibrium orbit) should be zero. The initial horizontal 
position, XO, (again, with respect to  the equilibrium orbit) will vary as the 
equilibrium orbit collapses away &om the inflector. For given values of 20 

and yo, the angles X; and yh should be adjusted to  minimize E = ZiE-lZo. 
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2. The initial beam ellipsoid matrix, Eo, should be matched to the 
uncoupled machine lattice at the idlector exit as discussed in section 14. 

3. The tune associated with the larger of the two normal-mode ellipses in 
the horizontal plane should be 4 + 4/5 = 4.8. 

4. The other normal-mode tune should then be chosen so that n turns 
around the machine are required before the beam ellipsoid center returns 
to its initial position. We have explored the cases n = 15, 20, 25, and 30. 
The values of Q2, Qy, and Is which give the desired normal-mode tunes for 
these cases are listed in Tables I-V along with the corresponding values of 
z* and y*. 
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